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a b s t r a c t

In the last few decades, sampling theory has been given a
substantial boost by the growing availability of geo-referenced
finite populations. Unfortunately, geo-referentiation is often in-
complete or affected by locational errors for a portion of the
units. Spatial sampling methods produce efficient estimates but
suffer from consequences of flaws in geo-referentiation. This
paper proposes a mixed sampling strategy for finite populations
where a portion of the units is not correctly geo-referenced.
The strategy exploits the available spatial information in the
sampling design and adopts traditional sampling techniques for
the remaining part of the population. Statistical properties of
the strategy are explained and studied through Monte Carlo
experiments on simulated and real data. An analysis of results
in terms of efficiency and optimal sample composition is per-
formed. The design-based nature of the proposed approach and
its adaptability to several practical situations make it a general
and easy-to-implement tool, which can outperform pure spatial
sampling designs in terms of efficiency in estimation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Finite populations are distinguished as with- or without-frame: In the first case, the number of
opulation units is known, and a complete list of units can be drawn up. In the second, population
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size is unknown, and a list of units cannot be constructed. Dealing with the first situation, some
information may be collected for all units of the population, and a sample is selected according
to the chosen sampling design. In general, under the stipulated sampling design, the estimator
properties are deduced from the distribution of all possible estimates. Considering that the higher
the quality of information collected, the better the estimates for the phenomenon of interest, the
sampling design is usually set up based on the statistical properties of adoptable estimators and
on information collectible through the sampling procedure. This happens, for example, in the case
of geo-referenced populations, which exhibit spatial autocorrelation among the units. Thus, in this
type of situation, the sampling design and the estimation procedure of a feature can be conveniently
defined to benefit from information about the locations of the units in a territory and either
explicitly exploit the spatial autocorrelation or lessen its negative side effects, i.e. a decrease in
precision, on the estimates. Finite populations can be efficiently sampled by exploiting spatial point-
level information, as pointed out by the flourishing literature over the last two decades. Spatial
sampling methods are mainly based on procedures that rely on the locations of the units (Hedayat
et al., 1988; Hedayat and Stufken, 1998; Stevens and Olsen, 2004; Wright, 2008; Dickson and Tillé,
2016), or are based on distances among them (Grafström et al., 2012; Grafström, 2012; Grafström
and Tillé, 2013). All methods have seen increasing success in literature and practice, due to the
increasing availability of populations subjected to geo-referencing. As an example, although it is
not feasible to map all units of a forest, recent research efforts have been directed over larger areas,
with the consequent availability of geo-referenced wider areas, which make spatial sampling very
useful in this field (Grafström et al., 2017). Or again, many national statistical institutes are building
geo-referenced archives of businesses, to exploit spatial information of the units in economic studies
(Cozzi and Filipponi, 2012).

Ideally, when a spatial sampling design for geo-referenced populations is adopted, the geograph-
cal coordinates of all units should be observed correctly. In actual fact, however, geo-referencing
rocesses, both terrestrial and airborne scanning, often result in populations where a portion of
he units is affected by non-negligible locational errors. Inaccuracy in the location of the units
ay be due to different reasons, such as geo-masking for privacy protection or technical problems

n automated geo-coding. The latter occur when GPS trackers used in the surveyed area cannot
stablish a reliable connection to satellites at that time, e.g., because of a momentary technical
alfunction, so that it is not possible to precisely detect locations, and some units are mislocated.

n this common practical situation, other variables not concerning the position in space of the units
re collected, to avoid a waste of time and money, and locations are imputed to one or some
oints of the sub-area interested by the problem. In some cases, a reasonable choice is to use geo-
mputation algorithms that exploit known auxiliary variables to impute missing locations. However,
hese methods have limitations. The most notable are the assumptions that units similar for a given
ariable are certainly close, and that a given relationship among the target variable and covariates
xists. For a discussion of geo-imputation techniques, see Henry and Boscoe (2008), Curriero et al.
2010) and Poloczek et al. (2014).

A less restrictive and preferable option is to assign the units whose locations cannot be correctly
racked to the centroid of the area to which they belong (Allshouse et al., 2010), to avoid introducing
new source of uncertainty with geo-imputation methods. However, even if recent improvements
o reduce inaccuracy in geo-coding of units are given by the integration of different sources of
nformation (e.g., in the environmental context, see Giannetti et al., 2018), errors about locations
ersist in affecting finite spatial populations. Therefore, locational errors affect the statistical
roperties of finite population estimators of the target variable total, introducing inefficiency in the
stimation process if the mislocated units are treated as correctly geo-referenced ones (Dickson
t al., 2018), or running into coverage errors if the affected units have null probabilities to be
ampled.
Exploiting the improvement in estimation due to spatial sampling methods, this paper proposes a

ampling strategy that explicitly handles the problem of estimating the population total in partially
eo-referenced populations. In particular, a sampling strategy that mixes spatial and non-spatial
esigns is proposed, to avoid coverage errors and biases resulting from the selection of mislocated
nits. The entire strategy is dealt with in a design-based perspective, so that no model assumption
2
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is needed to manage the units affected by locational errors, either in the imputation phase or in the
estimation procedure.

The paper is structured as follows: In Section 2, the methodological framework is defined and
he proposed mixed sampling strategy presented. In Section 3, the statistical properties of the
trategy are deepened. In Section 4, implementation issues of the proposed sampling strategy are
iscussed. In Section 5, the mixed sampling strategy is compared to spatial and non-spatial designs
n simulated data with Monte Carlo simulations. An example on forestry data is also provided. In
ection 6, the significance of the results of the work is deepened. In Section 7, the paper is concluded.

. A mixed sampling strategy

Let U = {1, . . . , k, . . . ,N} be a finite population of N units. Given the probability space (Ω,A,P),
measurable sampling design over U is a random set S defined as measurable mapping S: (Ω,A) →

ΩU ,AU ), where (ΩU ,AU ) is a measure space over the set ΩU of all admissible samples in U . Thus,
random sample s ∈ AU is a realization of the sampling design S. If the probability of sample s to
e selected is denoted with p(s)≡P[S = s], probability axioms guarantee that

∑
s∈ΩU

p(s) = 1 (see
.g. Resnik, 1999).
If, for any unit k ∈ U , πk denotes the probability that k is included in a sample drawn according

o the sampling design S, then

πk = P[k ∈ S] =

∑
s∈{A∈ΩU :k∈A}

p(s) =

∑
s∈ΩU

1{k∈s}p(s). (1)

It can be proved that inclusion probabilities πk (for k = 1, . . . ,N) are known and are strictly
ositive for any k ∈ U . Thus, the population total

YU =

∑
k∈U

yk (2)

f a variable of interest y can be consistently and unbiasedly estimated from sample s through the
orvitz–Thompson (H–T) estimator (Horvitz and Thompson, 1952):

ŶU =

∑
k∈s

yk
πk
. (3)

In the case of equal inclusion probabilities (e.g., in simple random sampling without replace-
ent), the H–T estimator has the form ŶU =

N
n

∑
k∈s yk.

When dealing with spatial populations, units of U lie in a two-dimensional space X ⊂ R2, so
hat their location is given by a pair of topographic coordinates (x1k, x2k), for any k ∈ U . Assume
that a geo-referentiation process has been carried out for all N units of the population, and that
the process failed for a number NM < N of units, which will be imputed to an incorrect location.
The population units can then be gathered into two subsets UG and UM , which collect the NG geo-
referenced units and the NM mislocated ones, respectively. The aim is to estimate the population
total YU , and a sample is drawn from U for this purpose.

As UG and UM are disjoint sets (UG ∩ UM = ∅), and the locational errors in a sub-area do not
affect the correct geo-referencing procedure in others, the population total YU can be computed as
the sum of the sub-population totals:

YU = YG + YM , (4)

where YG =
∑

k∈UG
yk and YM =

∑
k∈UM

yk.
According to decomposition (4), the two sub-populations UG and UM could be considered as two

strata of U; thus, two different sampling strategies may be implemented for each sub-population. In
particular, a spatial sampling design may be applied to UG to exploit the geo-referential information
available for units in UG, whereas a non-spatial sampling scheme may be applied to UM . The estimate
of the population total is computed as the sum of the estimates of YG and YM may then be computed,
and the population total can be estimated as

ˆ ˆ ˆ
YU = YG + YM . (5)

3
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The mixed sampling strategy (MSS) to which estimator (5) belongs permits the geo-referential
nformation in UG to be used, whereas it does not suffer from problems arising from geo-referential
rrors in UM , because the location information is ignored for those units.

. Statistical properties

.1. Consistency and unbiasedness

The MSS estimator (5) is the sum of estimators ŶG and ŶM . Thus, if they consistently estimate
G and YM , respectively, (5) will consistently estimate the population total YU , as a consequence of
asic properties on convergence in probability (see e.g. van der Vaart, 1998).
Analogously, from the linearity of the MSS estimator, it follows that if ŶG and ŶM are unbiased

estimators for sub-population totals YG and YM , then the properties of the expected value guarantee
that (5) will be an unbiased estimator for population total YU .

Therefore, the consistency and unbiasedness of estimators ŶG and ŶM are sufficient conditions for
the consistency and unbiasedness of the MSS estimator.

3.2. Variance and variance estimation

The variance of the H–T estimator (3) for fixed-size samples is given by Var(ŶU ) = −
1
2

∑
k,i∈U (πki−

kπi)(
yk
πk

−
yi
πi
)2, where πki is the probability that a pair of units k and i is selected in the same

ample, also known as second-order inclusion probability. If the sampling designs defined over
G and UM are independent, then ŶG and ŶM are independent H–T estimators of partial totals YG
nd YM , and the covariance cov(ŶG, ŶM ) equals zero. Thus, the variance of the sum of the two
ndependent H–T estimators can be derived as the sum of the variance of the H–T estimators, such
s Var(ŶU ) = Var(ŶG) + Var(ŶM ).
Under the proposed mixed sampling strategy, the expression of variance estimation depends on

sampling methods that are implemented on UG and UM , respectively. To select units in UM , any non-
spatial sampling method may be used, for example, simple random sampling without replacement
(SRSWOR). To derive variance estimation on this partition of the population, the well-known Sen–
Yates–Grundy variance estimator (Särndal et al., 1992) is a feasible option. On the other side, in
the area where the geo-referentiation process has been successful, any spatial sampling method
can be applied. A vast literature is devoted to this topic, especially in the last few years, also
due to the increase in spatial information availability (Stevens and Olsen, 2004; Grafström, 2012;
Grafström et al., 2012; Grafström and Tillé, 2013). Selection procedures are mainly based on the
exclusion of sampling neighboring units, to obtain samples spread over the area under study, that
is spatially balanced samples. Avoiding nearby units appearing in the same sample, spatial sampling
methods may produce some null second-order inclusion probabilities for units close together, for
example, for populations clustered in small groups. This makes the use of the Sen–Yates–Grundy
variance estimator unfeasible or by using approximations, able only to produce biased estimates.
Other alternatives, such as the Hajék–Rosén estimator (Hajék, 1981; Rosén, 1997a,b) or the local
mean variance estimator (Stevens and Olsen, 2003), usable according to specific sampling designs,
do not constitute optimal solutions for estimating variance for spatial sampling. Nevertheless, the
Hansen–Hurwitz variance estimator, which does not involve second-order inclusion probabilities,
tends to produce overestimates of the sampling variance (Wolter, 2007). This problem was reviewed
by Grafström et al. (2012). It is clear that finding a design-unbiased variance estimator of ŶU is
challenging and depends strongly on the spatial structure of the population under analysis.

4. Some empirical remarks

To better understand the advantages of using the proposed mixed sampling strategy instead of
other methods, some issues deserve special attention.

The implementation of the MSS requires some a priori choices to be made. First, the sampling
design S should be set up over U , and designs S and S should be independent. Thus, both may
G M

4
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be chosen regardless of the other, according to the characteristics of the respective target sub-
populations and the available information about them (such as geographic coordinates). As the
MSS estimator ŶU inherits its statistical properties from estimators ŶG and ŶM , a sound choice of
sampling designs SG and SM will positively affect the statistical efficiency of ŶU . Second, the sample
size n and the share ψ ∈ [0, 1] of units in the sample drawn from UG should be fixed, so that ψn
and (1−ψ)n are the number of sample observations drawn from UG and UM , respectively. Generally,
the value of sample size n is driven by practical constraints, including time, costs and feasibility of
a survey (see e.g. Groves, 2004). However, the choice about the sample composition in terms of
(relative) sub-sample sizes (that is, the value of ψ) is inherently statistical, and should be made a
priori and according to some criterion. The share ψ has to be set to minimize the mean squared
error of ŶU . Unfortunately, a general indication for defining ψn and (1−ψ)n does not exist, because
it is closely related to the population and sampling designs adopted over UG and UM . However, the
choice may be guided by the intention of respecting in the sample the proportion of units present
in the two sub-areas of the population, that is, ψ = ξ , where ξ = NG/N is the portion of correctly
geo-referenced units in U , or by another choice if it is preferable or required.

Another aspect that needs further discussion concerns the treatment of mislocated units and
the preferability of MSS compared to other sampling designs. Three alternative approaches may
be considered in handling locational errors, such as removing units that lack their correct locations
from the target population, imputing the location of these units to a unique arbitrary location within
the shadow sub-area and randomly imputing these locations over the shadow sub-area from which
they come. All three options allow any spatial sampling design to be applied, as they always produce
a population where all units are geo-referenced. However, they have different implications. In the
first case, some units are removed from the population, and therefore, they cannot be sampled,
leading to biased estimates of the population total (4). The implications of the second approach
essentially depend on how the spatial sampling algorithm used manages units that stay in on
the same location. A large variety of methods for sampling spatial finite populations have been
presented in the literature (see De Gruijter et al., 2006, and Wang et al., 2012, for detailed reviews),
ranging from traditional methods, such as simple random sampling or systematic sampling to
sample points or plots, to methods that explicitly consider the position in the space of the units
and distances among them in the selection process, increasing the efficiency in the estimation.
The latter start from the idea that nearby units show similar values in the target variable. Thus,
distances among units may be exploited to avoid selecting neighbors in the same sample. The spread
of the sample can be achieved in different ways, as demonstrated by a wide range of contributions
(see Benedetti et al., 2017, for a review). We focus on several recent articles that present local pivotal
methods (LPM, Grafström et al., 2012, spatially correlated Poisson sampling (SCPS, Grafström, 2012)
and local cube (LC, Grafström and Tillé, 2013, due to their remarkable efficiency and very fast
implementation. When some units of a population are mislocated and lie in the same location, for
example, the centroid of the shadow area, all these methods can be applied on the full population
by disregarding this fact because computing of the distance among the units is always possible.
Nevertheless, the distance is not correctly computed among the units in the shadow sub-area, and
among the units in UM and the border units in UG, causing the impossibility to select a well-spread
sample onto the study area. In fact, the implementation of a spatial sampling method, for example,
the LPM, on a partially geo-referenced population leads to a spatially spread sub-sample in UG and to
a simple random sub-sample in UM , with the loss in efficiency that is entailed if compared with the
application of the spatial sampling method on a full correctly geo-referenced population. A similar
argument can be made when mislocated units are randomly imputed to two or more locations in
the shadow sub-area: A spatial sampling method may be applied on the whole population, but the
quality of results will be affected by the incorrect locations.

5. Simulation experiments

In this section, the results of three Monte Carlo experiments are illustrated and discussed where

the MSS is compared to the SRSWOR and the LPM. The use of local pivotal method is illustrative,

5
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Fig. 1. Population of N = 3000 units in a unit square X = [0, 1]2 used in the Monte Carlo simulation. The size of the
points is proportional to the values yk of the variable of interest y.

and it was chosen for its better performances in estimation and time of execution compared to
similar selection methods.

The first experiment aims at investigating the use of the MSS when ψ = ξ , and the similarities
highlighted among the LPM and the MSS in this case. The second Monte Carlo simulation considers
examples where ψ = ξ is not the optimal choice, and it is shown that in such situations the MSS
outperforms the LPM. The third experiment is a comparison of the methods on a real environmental
dataset.

To conduct the first two experiments, a population of N = 3000 units was generated over a
unit square (thus X = [0, 1]2 ⊂ R2) according to a uniform Poisson process (see e.g. Diggle, 2014).
For each unit k ∈ U , the values of yk are generated by a log-Gaussian random field with µ = 0,
σ 2

= 1, and correlation function ρ(d) = e−
d
φ , where φ = 1, and d is the Euclidean distance between

units (for further details about Gaussian random fields, see e.g. Diggle and Ribeiro, 2007, Ch. 3).
The resulting population is shown in Fig. 1. Note that evident spatial clusters result in bottom-left
and top-right sub-areas where the values yk are large, while in the central zone along the NW-SE
irection the values yk are relatively small.
In the population, a shadow sub-area XM ⊂ X has been delimited according to several criteria. As

Fig. 2 shows, shadow sub-areas are circles with two different centers and various radii. The centers
of the coordinates c1 = (0.1, 0.1) and c2 = (0.7, 0.7) localize the shadow sub-areas where the
ariable of interest y exceeds the population mean and where y is approximately in line with it,
espectively. The radii of the circles are set to include in the shadow sub-area 10%, 20% and 40%
f the population units (300, 600 and 1200 units, respectively). These sizes are purely illustrative
ecause the size of the shadow sub-areas may be of any size. Units belonging to the shadow sub-
reas have been collapsed all in the same point, such as the centroid of the belonging sub-area
Fig. 2).

The performances of the methods are evaluated in all the experiments in terms of the relative

oot mean squared error, defined as rRMSE =

√∑R
i=1(ŶiU−YU )2/R

YU
where R = 10 000 Monte Carlo

eplications of the estimators.

.1. MSS when ψ = ξ

In this section, the performances of the MSS design when ψ = ξ are compared with Monte Carlo
imulations with those of the SRSWOR and the LPM. This possibility occurs when a wise choice is
6
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Fig. 2. Population represented in Fig. 1 where the six shadow sub-areas are illustrated. Conditions NM = 300; 600; 1200
correspond to 10%, 20% and 40%, respectively, of the population size.

to proportionally represent the two strata of the population, that is, the geo-referenced sub-area
and the mislocated one. The MSS was based on an LPM design over the correctly geo-referenced
sub-population UG and the SRSWOR over the mislocated sub-population UM , whereas the sample
composition parameter ψ was equal to ξ = NG/N . The experiment was carried out on for sample
sizes equal to 150, 300 and 600, which correspond to the sampling fractions of 5%, 10% and 20%,
respectively.

Simulation results are reported in Table 1. Results confirm the analysis previously stated, as
the MSS and the LPM are equivalent sampling designs in terms of efficiency if the MSS is based
on samples where the number of correctly geo-referenced and mislocated units proportionally
reproduces the composition of the population (that is, ψ = ξ ). The rRMSE values are essentially the
same despite the sample size, the center of the shadow area and the number of non-geo-referenced
units.

The proposed experiment investigates the case in which only an area of the population is shaded.
Actually, it could frequently happen that the geo-coding process is imperfect over some areas of the
population. In these situations, however, selecting spatial samples is possible, and the considerations
above may be extended. In fact, the MSS can be easily applied with more than one shadow area
if ψ = ξ , because it is always possible to select units proportional to the size of each area.
Furthermore, the LPM applied on the whole incorrectly geo-referenced population may experience
a loss in estimation efficiency, as this approach currently faces a greater source of ‘‘disturbance’’
in properly computed distance among the units. In addition, with this method the proportional
selection of units from all areas may not be respected, due to rounding problems.

5.2. MSS when ψ ̸= ξ

The second experiment analyzes how the rRMSE of the MSS changes with ψ . In many practical
cases, the size of n needs to be set differently than a proportional representation of the sub-areas of
7
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Table 1
Relative root mean squared error (rRMSE) of the estimators of the population total YU under different mis-geo-
eferentiation schemes for 10000 Monte Carlo replications. The centers of the coordinates c1 = (0.1, 0.1) localize the
hadow sub-areas where the variable of interest y exceeds the population mean.
Shadow zone Design Sample size (n)

Center NM/N 150 300 600

Clean data SRSWOR 0.0689 0.0420 0.0279
Clean data LPM 0.0263 0.0127 0.0073
c1 10% LPM 0.0301 0.0168 0.0104
c1 10% MSS 0.0301 0.0166 0.0103
c1 20% LPM 0.0338 0.0195 0.0126
c1 20% MSS 0.0334 0.0196 0.0122
c1 40% LPM 0.0526 0.0315 0.0209
c1 40% MSS 0.0518 0.0316 0.0208
c2 10% LPM 0.0270 0.0135 0.0079
c2 10% MSS 0.0268 0.0135 0.0078
c2 20% LPM 0.0339 0.0195 0.0126
c2 20% MSS 0.0338 0.0195 0.0124
c2 40% LPM 0.0353 0.0201 0.0128
c2 40% MSS 0.0353 0.0200 0.0124

the population. This happens, for example, when some zones are difficult to reach due to the shape
of the territory. Then, it may be decided to adequately set ψ according to the practical fact.

The settings of the simulation experiment are the same adopted in the previous section except
the following:

1. Only the shadow sub-area centered in c1 = (0.1, 0.1) and including NM = 600 units (20% of
the population) was considered.

2. The MSS estimator was computed for ψ ∈ {0.05, 0.10, 0.15, . . . , 0.85, 0.90, 0.95}.
3. Heteroscedastic random fields were considered. In addition to the homoscedastic case (re-

ferred to as case 1) where σk = 1 for any unit k ∈ U , a random field where σk =

1 + (c2x1k + c2x2k)
−1 (referred to as case 2) and σk = 1 + (c2x1k + c2x2k) (referred to as case 3) are

considered, having been denoted with (cx1k, cx2k) the Cartesian coordinates of unit k ∈ U .

The forms of heteroscedasticity specified in the latter point have different implications in terms of
the variance of the variable of interest among the correctly geo-referenced and mislocated units. In
particular, case 1 implies that the variance of y is the same over UG and UM ; case 2 implies that the
variance of y is larger over UM than over UG, whereas case 3 implies that the variance of y is larger
over UG than over UM .

The results of the simulations are summarized graphically in Fig. 3. Tables of complete results
are reported in supplementary material, Appendix A.

Some considerations must be drawn. First, as verified in the previous simulation experiment, the
MSS estimator performed as well as the LPM when ψ = ξ (vertical dotted line in Fig. 3). However,
Fig. 3 shows that if ψ is properly set, the MSS may exhibit a lower rRMSE than the LPM. Second,
the maximum gain in terms of the rRMSE that can be obtained with the optimal choice of sample
composition parameter ψ is bounded by the difference in the rRMSE between the LPM estimator
and the LPM estimator based on correctly located data (called the Clear LPM). Formally:

rRMSE(Ŷ (MSS)
ψ∗ ) − rRMSE(Ŷ (ClearLPM)) ≤ rRMSE(Ŷ (LPM)) − rRMSE(Ŷ (ClearLPM)). (6)

Third, the upper bound (6) is affected by the sample size and by the presence and form of
heteroscedasticity. As Fig. 3 shows, bound (6) decreases as the sample size gets larger and when
the variance of yk for mislocated units of UM gets smaller compared to that of geo-referenced units
UG.

Fourth, in case 1 (homoscedasticity) and 2 (the variance over UM larger than the variance over
UG) the rRMSE curve is relatively flat around its minimum, suggesting that if N−1

M
∑

k∈UM
σ 2
k ≥

N−1 ∑
σ 2, parameter ψ should be considerably smaller than ξ . However, the performances
G k∈UG k

8
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Fig. 3. Relative root mean squared error (rRMSE) of the LPM design based on correctly geo-referenced data (clear LPM,
drawn as a black solid line), LPM (red dotted line), MSS (green dashed line) and SRSWOR (blue dashed line). The rRMSE
(y-axis) is shown as a function of ψ (x-axis). Values were multiplied by 100. As all designs except the MSS do not depend
on ψ , their rRMSE is depicted as an horizontal line. The dotted vertical line (gray) shows the value of ξ = 0.8 (thus,
M = 600). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
f this article.)

f the MSS estimator are not sensitive to small changes in the value of ψ . The sensitivity of the
RMSE of the MSS estimator is larger in case 3, where the optimal sample composition requires
hat ψ∗ > ξ . The choice of ψ leads to a moderate reduction in the rRMSE of the MSS estimator, as
reviously noted.

.3. An example on real data

To give an example on real data, Monte Carlo simulations are used for comparing the estimation
ethods on the longleaf dataset of the R package spatstat (Baddeley and Turner, 2005)
ollected by Platt et al. (1988). The dataset includes information concerning 584 Longleaf pine (Pinus
alustris) trees settled in a forest portion of 40000 square meters in southern Georgia (USA), which
lthough a not very big area is useful for conducting and showing a practical experiment. For each
ree, the location and the bole basal area at breast height (1.30 m, expressed in cm) are available. The
iameters of the trees range from 2 cm to 75.9 cm, with the mean equal to 26.84 cm and the median
9
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Fig. 4. Population of 584 Longleaf pine trees in an area of 200 × 200 m (longleaf dataset). The circles are centered
n the pines’ coordinates, and their sizes are proportional to the pines’ diameters. The gray circle delimits the shadow
ub-area.

able 2
elative root mean squared error (rRMSE) of the population total estimators for different sample sizes under various
ampling designs: simple random sampling without replacement (SRSWOR), local pivotal method (LPM), local pivotal
ethod on original correctly-geo-referenced data (Clear LPM) and mixed sampling strategy (MSS) for various values of
. The Monte Carlo simulations use the longleaf dataset and are based on 10000 replications.
Design ψ Sample size (n)

29 58 88 117 175

SRSWOR – 0.1236 0.0851 0.0666 0.0559 0.0435
Clear LPM – 0.0909 0.0594 0.0441 0.0349 0.0264
LPM – 0.1120 0.0682 0.0525 0.0425 0.0322
MSS 0.70 0.1010 0.0638 0.0472 0.0395 0.0289
MSS 0.75 0.0983 0.0627 0.0471 0.0386 0.0283
MSS 0.80 0.0971 0.0623 0.0470 0.0378 0.0289
MSS 0.85 0.1010 0.0632 0.0490 0.0395 0.0298
MSS 0.90 0.1030 0.0668 0.0526 0.0429 0.0337

equal to 26.15 cm. As adult trees are conventionally defined as those trees with a diameter greater
than or equal to 30 cm, the dataset contains 313 young trees and 271 adult trees. The population
shows spatial correlation among the units, as shown in Fig. 4.

The gray circle represents a shadow sub-area that includes 20% of population units; thus,
M = 117, and ξ = 0.8. Sampling designs were applied for various sampling fractions: 5%
29 observations), 10% (58 observations), 15% (88 observations), 20% (117 observations) and 30%
175 observations). The simulation is based on 10000 replications of a random experiment where
RSWOR, LPM and MSS designs are applied to the population to estimate the total bole basal area.
he MSS design was applied with ψ = 0.7; 0.75; 0.80; 0.85; 0.9. Results of Monte Carlo simulations

are reported in Table 2.
As expected, in this case the SRSWOR is also the most inefficient design, whereas the difference

in the rRMSE between the Clear LPM and LPM designs is small (see (6)). When ψ = ξ = 0.8, so
that the share of the units in the sample and the portion of correct geo-referenced units in the
10
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population are equal, the MSS performs better than the LPM, although they should be equivalent,
as previously stated. In the present case, the improvement is probably slight because of the border
effect, which tends to emerge more frequently in populations of moderate size and is more evident
with different populations.

6. Discussion

Having to deal with finite populations partially geo-referenced, in which a portion of any
ize of the units is mislocated, is a challenge for researchers and practitioners in many fields of
esearch. When a sample has to be selected from a population, it cannot be overlooked that this is
ffected by locational errors. This is because the introduction of sources of errors should be avoided
hen spatial sampling methods are used, which constitute a valuable tool for selecting samples

rom spatial finite populations. To avoid losing all the positive effects in terms of efficiency and
epresentativeness of spreading a sample over the territory, namely, to use spatial sampling, this
tudy tries to give an answer: Exploit spatial point-level information, when it is available, and
esort to traditional random sampling methods, when it is not, without excluding any unit from
he possible selection.

The proposed MSS is able to handle the cited issues without resorting to models or strong
ssumptions. Populations affected by locational errors may be viewed as stratified populations,
n which is possible to apply different methods on different sub-areas. The explained statistical
roperties and the presented examples demonstrate the strong adaptability of the method to many
ractical situations. Specifically, the flexibility in choosing the sample size in each sub-population,
orrectly geo-referenced and mislocated, is particularly relevant in those cases where the sampling
appens forcibly in a given area, for example, due to a particular shape of the territory that makes
t the only choice, or to a prescribed and not very modifiable number of units. Moreover, regarding
hat is said about the sampling methods to mix, the proposed strategy is simply extendable to
everal other spatial sampling designs based on the distance among the units, for the correctly
eo-referenced sub-area, and to several traditional sampling methods, for the mislocated one. As
reviously stated, multiple shadow areas may occur in practice, and the mixed sampling strategy
eveals its strengths once again, due to the possibility of properly setting the share of units to be
ampled in each area, which is an avenue not available with spatial algorithms alone.

. Conclusions

In this paper, a mixed sampling strategy is proposed for partially geo-referenced populations. The
se of a spatial sampling design for the geo-referenced sub-population and a non-spatial design
n the incorrectly geo-referenced sub-population makes the overall sampling strategy consistent
ith the available information on population units. In addition, it makes the strategy flexible, in
erms of sub-population sampling fractions and in terms of sub-population sampling strategies.
he properties of the proposed estimator are ascribable to the properties of the well-known H–T
stimator, as sub-populations are independent and thus, estimators of sub-population totals.
The Monte Carlo simulations carried out on artificial and real data clearly showed that the

roposed mixed sampling strategy outperforms the exclusive use of spatial sampling designs if the
omposition parameter ψ is properly set. When ψ = ξ , and SRSWOR is adopted for incorrectly
eo-referenced sub-population, the performances of the mixed sampling strategy are similar to
hose of the LPM adopted on the whole population imperfectly geo-referenced, with the advantage
f setting the portion of units to select in each stratum of the population. In addition, the MSS
ermits the composition of the sample ψ to be set independently of the population composition ξ .
general rule for setting parameter ψ close to the optimum ψ∗ is not available but may be decided

from time to time based on specific requirements of the survey and the population characteristics.
Improvements in the performances of the MSS estimator could potentially be attained by exploiting
available auxiliary information in the selection step, to use unequal probability sampling designs
over both sub-areas where units lie.
11
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